Se 10 galline depongono 15 uova a settimana, una gallina depone 1,5 uova a settimana. Quindi, 15 galline depongono 22,5 uova in una settimana. In due settimane, queste 15 galline depongono 45 uova.
Ci sono 14 capre e 8 galline.
Per risolvere il problema, chiamiamo (c) il numero di capre e (g) il numero di galline.
Abbiamo due equazioni:
1. (c + g = 22)
2. (4c + 2g = 72)
Dividendo la seconda equazione per 2:
(2c + g = 36)
Ora sottraiamo la prima dalla seconda:
(2c + g - (c + g) = 36 - 22)
Questo dà: (c = 14)
Sostituendo (c = 14) nella prima equazione:
(14 + g = 22)
Quindi: (g = 8)
La soluzione all'enigma è che Edoardo ha cinquanta monete tutte del valore di 2 centesimi ciascuna, che sommano esattamente a un euro.
Spiegazione: Le uniche monete che consentirebbero di raggiungere cinquanta unità per un totale di un euro sono quelle da 1 centesimo e da 2 centesimi. Se avesse solo monete da 1 centesimo, ne avrebbe 50 per un totale di 50 centesimi, che è la metà di quanto necessario.
Se avesse solo monete da 2 centesimi, 50 monete equivarrebbero a 100 centesimi, ovvero 1 euro, che soddisfa entrambe le condizioni del problema.
27 pioli. Mario parte dal piolo centrale di una scala. Sale sei pioli, scende otto, risale tre e infine sale dodici per raggiungere la cima. Poiché termina dodici pioli sopra il centro, il doppio della distanza dal centro alla cima è il totale dei pioli. Se consideriamo il centro come il 14° piolo (perché 27 / 2 = 13.5, arrotondato a 14), allora la scala ha in totale 27 pioli.
Il totale delle file è 7. Marco deve sistemare 35 arance, disponendole in file decrescenti: ogni fila ha una arancia in meno rispetto alla precedente. Partendo da una fila di 7 arance, si ha:
7 + 6 + 5 + 4 + 3 + 2 + 1 = 28
Mancano 7 arance, quindi si aggiunge un'altra fila con 7 arance, arrivando esattamente a 35.
Quindi, ci sono 8 mosche e 0 ragni.
Per risolvere questo problema, possiamo utilizzare un sistema di equazioni.
Chiamiamo `m` il numero di mosche e `r` il numero di ragni. Abbiamo le seguenti informazioni:
1. Ogni mosca ha 6 zampe e ogni ragno ne ha 8.
2. Il numero totale di zampe è 48.
3. Il numero totale di animali (mosche e ragni) è 8.
Le equazioni che descrivono la situazione sono:
6m + 8r = 48
m + r = 8
Possiamo risolvere questo sistema partendo dalla seconda equazione per trovare `m`:
m = 8 - r
Ora sostituiamo questa espressione nella prima equazione:
6(8 - r) + 8r = 48
Espandendo e semplificando:
48 - 6r + 8r = 48
2r = 48 - 48
2r = 0
Quindi: r = 0
Se `r` (il numero di ragni) è 0, allora:
m = 8 - 0 = 8
Quindi, ci sono 8 mosche e 0 ragni.
Iniziamo con 100 litri di acqua in una botte (A) e 100 litri di vino in un'altra (B).
Si versa 1 litro di vino dalla botte B nella botte A, che ora contiene 101 litri di cui 1 litro di vino.
Si preleva 1 litro di miscela dalla botte A (con concentrazione 1/101 di vino e 100/101 di acqua) e lo si versa nella botte B. La botte B avrà quindi 99 litri di vino e una piccola quantità di acqua (100/101 litri).
Alla fine, la quantità di acqua nel vino nella botte B è uguale alla quantità di vino nell'acqua nella botte A.