Se avete delle mosche con sei zampe e dei ragni con otto zampe e in tutto ci sono 48, quante sono le mosche? E quanti sono i ragni?
Quindi, ci sono 8 mosche e 0 ragni.
Per risolvere questo problema, possiamo utilizzare un sistema di equazioni.
Chiamiamo `m` il numero di mosche e `r` il numero di ragni. Abbiamo le seguenti informazioni:
1. Ogni mosca ha 6 zampe e ogni ragno ne ha 8.
2. Il numero totale di zampe è 48.
3. Il numero totale di animali (mosche e ragni) è 8.
Le equazioni che descrivono la situazione sono:
6m + 8r = 48
m + r = 8
Possiamo risolvere questo sistema partendo dalla seconda equazione per trovare `m`:
m = 8 - r
Ora sostituiamo questa espressione nella prima equazione:
6(8 - r) + 8r = 48
Espandendo e semplificando:
48 - 6r + 8r = 48
2r = 48 - 48
2r = 0
Quindi: r = 0
Se `r` (il numero di ragni) è 0, allora:
m = 8 - 0 = 8
Quindi, ci sono 8 mosche e 0 ragni.
INFORMAZIONI SUL ROMPICAPOE' stata visualizzato
56 volte.
E' stato votato
2 volte.
Pubblicato in data
12/09/24.
E' lungo
136 caratteri.